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1. BACKGROUND AND DEFINITIONS

This review discusses the current state of the art of theoretical
descriptions, and computational treatments, of nonadiabatic
processes; reviews how the field got to this point; and suggests,
with little likelihood of success, directions along which the field
may evolve. The field has grown rapidly in the past two decades
so that it is impossible to touch on, let alone describe, all areas
affected by nonadiabatic processes. What I have attempted to do
is provide more than a casual description of several broadly
defined directions in computational nonadiabatic chemistry and
provide citations or less detailed discussions of other work in
those areas.

1.1. Some History
In a nonadiabatic process the description of nuclear motion

involves more than one Born�Oppenheimer potential energy
surface. The theory of nonadiabatic chemical reactions goes back
to at least 1932, when London’s classic work, “On the Theory of
Nonadiabatic Chemical Reactions”, appeared.1 London ob-
served that the simplest examples of such reactions include2

charge exchange [Ar + N+ T Ar+ + N]; energy transfers [ Hg0 +
Na T Hg + Na0 (activation, stimulated fluorescence, etc.]; and
formation of ion molecules from atoms [Na + Cl2T NaCl + Cl,
etc.]. The current list is much longer!

Although the theory of nonadiabatic reactions goes back
nearly to the advent of quantum mechanics, our understanding
of the mechanism of these processes has changed dramatically in
recent years with the appreciation that intersections of potential
energy surfaces, particularly conical intersections,3�5 defined
carefully below, play a significant role in such processes.

In retrospect, the previous obscurity of conical intersections
may appear surprising because their importance in nonadiabatic
processes, including radiationless decay, was appreciated early
on. A 1937 paper6 authored by E. Teller and entitled “The
Crossing of Potential Energy Surfaces” was concerned with
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“whether the molecules can get from a higher potential energy
surface to a lower one, transforming in this way electronic
excitation energy into kinetic energy and finally into heat.”Using
an extension of the 1-dimensional analysis of Zener,7 Teller
showed that conical intersections may lead to rapid radiationless
decay. As in many modern day dynamics treatments, in Teller’s
analysis, nuclear motion was treated classically whereas the
electrons were described using wave function techniques.

A consequence of Teller’s observation that conical intersec-
tions are engines of nonadiabatic transitions is that electronic
structure techniques that locate and characterize conical inter-
sections could provide qualitative insights into the potential
outcome of nonadiabatic processes, in the absence of actual
nuclear dynamics. However, Teller’s insights into the significance
of conical intersections were ahead of their time. The significance
of conical intersections in nonadiabatic processes would not be
appreciated for an additional half century.

1.2. Conical Intersections, Derivative Couplings and the
Diabatic Representation

To describe a nonadiabatic process mathematically, the total
wave function for theNat nuclei (coordinates Rj, j = 1�Nat) and
the Nel electrons (coordinates rj, j = 1� Nel), which satisfies the
time-independent Schr€odinger equation

ðHTðr,RÞ � ETk ÞΨT
Kðr,RÞ ¼ 0 ð1aÞ

is expanded as

ΨT
Kðr,RÞ ¼ ∑

Nstate

J¼ 1
Ψe, a

J ðr,RÞχKJ ðRÞ ð1bÞ

where

HTðr,RÞ ¼ ∑
Nat

l¼ 1
� 1
2Ml

∇2
l þ Heðr,RÞ

� Tnuc þ Heðr,RÞ ð1cÞ
and the adiabatic electronic wave functions ΨJ

e,a are eigenfunc-
tions of the standard (Coulomb) electronicHamiltonian,He(r,R),
that is,

½Heðr,RÞ � EeJðRÞ�Ψe, a
J ðr,RÞ ¼ 0 ð2Þ

Inserting eq 1b into eq 1a and taking the dot product with ΨM
e,a

gives

ðTnuc þ EeMðRÞ þ KM,MðRÞ � ETKÞχKMðRÞ

¼ ∑
J 6¼M

∑
Nat

l¼ 1

fM,J
l ðRÞ
Ml

3∇l � KM, JðRÞ
" #

χKJ ðRÞ ð3aÞ

where

fM, J
l ðRÞ ¼ <Ψe, a

M ðr,RÞj∇lΨ
e, a
J ðr,RÞ>r

fM, JðRÞ ¼ <Ψe, a
M ðr,RÞj∇Ψe, a

J ðr,RÞ>r ð3bÞ
so that fM,J(R) = [f1

M,J(R), f2
M,J(R), ..., fNat

M,J(R)] and

KM, JðRÞ ¼ <Ψe, a
M ðr,RÞjTnucΨe, a

J ðr,RÞ>r ð3cÞ
Here fM,J(R) is the derivative coupling and KM,M is the adiabatic
or Born�Oppenheimer diagonal correction.8�16 Note that
fM,J(R) is an antisymmetric matrix, that is, fM,J(R) = �f J,M(R)

whose elements are 3Nat dimensional vectors. For clarity, we
note that, as indicated in eq 3b and the text that follows, because
the subscript l in fl

M,J(R) refers to an atom, each fl
M,J(R) is a three-

component vector. Thus fl
M,J(R) denotes three components of

the 3Nat dimensional vector fM,J(R). Using a complete set of
adiabatic states in eq 3c gives

KM,MðRÞ ¼ � ∑
l,N

fM,N
l ðRÞ 3 f N,M

l ðRÞ
2Ml

ð3dÞ

Equation 3a represents a system of coupled equations for the
nuclear motion, with the coupling provided by fL

M,J and KM,J. In
general the contribution fL

M,J is much larger than that ofKM,J. The
vicinity of points of intersection of the potential energy surfaces,
that is, regions where EM

e (Rx) ≈ EN
e (Rx), are clearly regions of

particular interest. Note that, when the intersection is a conical
one,KM,M(R)≈KN,N(R) forR≈Rx andKM,M(R

x) =KN,N(R
x) =

+∞. The behavior of KM,M(R) near R
x produces a node in the

adiabatic wave functions at Rx.
To simplify eq 3a, the diabatic basis is introduced. The diabatic

basis is obtained from the adiabatic basis by a unitary transforma-
tion:

Ψe, d
K ðr,RÞ ¼ ∑

L
Ψe, a

L ðr,RÞUL,KðRÞ ð4aÞ

and is designed to remove the coupling terms on the right-hand
side of eq 3a. Rigorous diabatic states should have vanishing
derivative couplings, that is, they should satisfy

<Ψe, d
M ðr,Rj∇Ψe, d

K ðr,RÞ>r ¼ 0 ð4bÞ
which becomes

<Ψe, d
M ðr,Rj∇Ψe, d

K ðr,RÞ>r ¼ ∑
J, J 0

UJ0 ,MðRÞ½f J0 , Jðr,RÞUJ,KðRÞ

þ δJ, J0UJ 0 ,MðRÞ∇UJ,KðRÞ�
¼ ðU†fUÞM,K þ ðU†∇UÞM,K ¼ 0

ð4cÞ
so

fU þ ∇U ¼ 0 ð4dÞ
This innocent looking equation has been the subject of much
discussion. For diatomic molecules that have only 1 internal
coordinate, eq 4d is a differential equation and is readily
integrated provided the derivative couplings fI,J are available.17,18

However, for molecules with more than one internal degree of
freedom, eq 4d is a partial differential equation. Baer observed
that eq 4d can be solved by path integration, but he also noted
that the integral would only be path-independent provided a curl
condition on the derivative coupling was satisfied.19�21 Mead
and Truhlar22 further analyzed the situation and traced the failure
of the curl condition to derivative couplings outside the space
included in eq 4a. Thus, they concluded that a rigorous diabatic
basis only exists in the trivial case in which a complete basis is
included in eq 4a. This result is consistent with an earlier
observation by Smith.17 For this reason approximate diabatic
bases are referred to as quasi-diabatic. For the remainder of this
review, we will suppress the attribute quasi.
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If rigorous diabatic bases did exist, eq 3a would have the form

ðTnuc þ Hd
M,MðRÞ � ETKÞχK, dM ðRÞ

¼ ∑
J 6¼M

Hd
M, Jχ

K, d
J ðRÞ ð5aÞ

where

ΨT
Kðr,RÞ ¼ ∑

Nstate

J¼ 1
Ψe, d

J ðr,RÞχK, dJ ðRÞ ð5bÞ

and

Hd
J,KðRÞ ¼ <Ψe, d

J ðr,RÞjHejΨe, d
K ðr,RÞ>r ð5cÞ

Because of the incredible simplicity of eq 5a compared to eq 3a,
much effort has been devoted to the determination of approx-
imate23�30 or even the most31,32 diabatic basis. It is fairly routine
to use eq 5a regardless of the quality of the diabatic representa-
tion. This point is discussed further in section 2.

1.3. ClassifyingConical Intersections: SymmetryConsiderations
We now turn to the classification of points of conical inter-

section. It is useful to partition conical intersections; here we
restrict to intersections of two states, into three groups: symmetry-
required intersections, accidental symmetry-allowed intersec-
tions, and accidental same-symmetry intersections.4 For sym-
metry-required intersections the specification that the molecule
has a particular point group symmetry is sufficient to guarantee
the degeneracy of the electronic states, that is, the electronic
states are members of a two-dimensional irreducible representa-
tion. For accidental symmetry-allowed intersections the two
states carry distinct one-dimensional irreducible representations.
No degeneracies are guaranteed, but they may be found by
changing only one totally symmetric nuclear coordinate. Actually
the restriction of the distinct representations to one-dimensional
representations is unnecessary but is used here because we have
restricted the discussion to two state intersections. Finally for
accidental same-symmetry intersections two coordinates must be
changed to locate a degeneracy.

The existence of accidental same-symmetry conical intersec-
tions was recognized early on. In 1929 J. von Neumann and E.
Wigner published their classic work “On the Behavior of
Eigenvalues in Adiabatic Processes”.33 They observed that for
real symmetric matrices it suffices to be able to change two (five)
real parameters tomake two (three) eigenvalues of anN�N real
symmetric Hamiltonian degenerate. Since for diatomics, which
have only one internal coordinate, no crossings of states of the
same symmetry are permitted, this result is (unfortunately)
frequently referred to as the noncrossing rule.

1.4. Prevalence of Conical Intersections
Despite the rigorous results of von Neumann and Wigner and

the insights of Teller, until ∼1990, because most molecules do
not have any point group symmetry, let alone high enough
symmetry to possess symmetry-required degeneracies, there was
some skepticism that conical intersections were sufficiently
prevalent to warrant general attention. The situation in this
period was described in a 1974 review, entitled “Physical Basis of
Qualitative MO Arguments in Organic Photochemistry”.34 In
this review J. Michl wrote, “While in principle the various

hypersurfaces can cross as the nuclear configuration is varied
along various paths this is a relatively uncommon occurrence and
along most paths such crossings, even if intended, are more or
less strongly avoided.” This opinion, with regard to conical
intersections not required or allowed by symmetry, was prevalent,
although not universally held,35,36 until the early 1990s. Indeed in
the early 1970s some confusion about the validity37 of the
noncrossing rule itself arose, although those questions were
ultimately set aside.38,39

In the last 20 years conical intersections have gone from an
arcane theoretical construct to an essential concept in explaining
nonadiabatic processes.40�42 In that period there have been two
key advances in the electronic structure tools for dealing with
conical intersections: (i) algorithms to locate conical inter-
sections43�47 and (ii) formal and computational tools to char-
acterize conical intersections.48�51

1.5. Locating and Characterizing Conical Intersections
There are basically two classes of algorithms for locating

conical intersections, those that exploit the derivative couplings43�45

and those that do not.46 In this review we focus on the former
since the tools used in those searches are also applicable to the
characterization of conical intersections.

First, we discuss some electronic structure results. The
adiabatic electronic state is expanded in a large configuration
state function (CSF) basis, ψα(r,R), α = 1, ..., NCSF, as

Ψe, a
J ðr,RÞ ¼ ∑

NCSF

α¼ 1
cJαðRÞψαðr,RÞ ð6Þ

where the cJ satisfy

½HCSFðRÞ � IEaJ ðRÞ�cJðRÞ ¼ 0 ð7aÞ

and Hα,β
CSF(R) = Æψα(r, R)|H

e|ψβ(r, R)ær. Then define

hM,NðRÞ � cMðRÞ†∇HCSFðRÞcNðRÞ ð7bÞ
where rHα,β

CSF(R) = rÆψα|H
e(r,R)|ψβær. Also note that the

derivative or nonadiabatic coupling is given by

f I, JðRÞ ¼ ÆΨe, a
I ðr;RÞj∇jΨe, a

J ðr;RÞær
¼ CIf I;J ðRÞ þ CSFf I;J ðRÞ ð8Þ

where

CIf I;J ðRÞ ¼ ∑
α
cIαðRÞ∇cJαðRÞ ¼ hI, JðRÞ

EaJ ðRÞ � EaI ðRÞ
ð9aÞ

and

CSFf I;J ðRÞ ¼ ∑
α
cIαðRÞÆψαj∇ψβærc

J
βðRÞ ð9bÞ

The hM,N are efficiently obtained49,52 using analytic gradient
techniques.53

Two state degeneracies of eq 7a are degeneracies in a space
of dimension NCSF. Most discussions of two state conical
intersections rely on 2� 2 matrices. The relation between these
two perspectives is established using degenerate perturbation
theory.54 It was shown49 that in the vicinity of Rx where a two
state degeneracy of 7a for states I, J exists, that is, for R near Rx or



484 dx.doi.org/10.1021/cr2001299 |Chem. Rev. 2012, 112, 481–498

Chemical Reviews REVIEW

R = Rx + δR, the eigenenergies of 7a can be obtained from the
following eigenvalue problem:

ðEaJ ðRxÞ þ sI, J 3 δRÞ
1 0
0 1

 !"

þ �gI, JðRxÞ 3 δR hI, JðRxÞ 3 δR
hI, JðRxÞ 3 δR gI, JðRxÞ 3 δR

 !#
c̅K1 ðRÞ
c̅K2 ðRÞ

 !

¼ Ed, aK ðRÞ c̅K1 ðRÞ
c̅K2 ðRÞ

 !

ð10aÞ
where

Ed, aK ðRÞ ¼ EaJ ðRxÞ

þ sI, J 3 δR ( ½ðgI, J 3 δRÞ2 þ ðhI, J 3 δRÞ2�1=2
ð10bÞ

EJ
a(Rx) = EI

a(Rx), K = (, the energy difference gradient, gI,J, is
given by

gI, J ¼ ðhJ, J � hI, IÞ=2 ð11aÞ
and the average energy gradient, sI,J, is given by

sI, J ¼ ðhJ, J þ hI, IÞ=2 ð11bÞ
When EK

d,a(R) is plotted along the directions gI,J and hI,J, it has
the appearance of a double cone. Vertical sections through
possible double cones are shown in Figure 1. Thus, at Rx the
vectors sI,J(Rx), gI,J(Rx), and hI,J(Rx) describe the local topogra-
phy of the intersecting potential energy surfaces. Note that
directions orthogonal to gI,J(Rx) and hI,J(Rx) contribute only
at second or higher order to eq 10. Further it can be shown that at
a conical intersection gI,J(Rx) and hI,J(Rx) can be chosen27 such
that gI,J(Rx) ^ hI,J(Rx). Consequently, it is useful to define a
coordinate system known as intersection adapted coordinates,48

composed of two unit vectors x̂ = gI,J(Rx)/ )gI,J(Rx) ), ŷ =
hI,J(Rx)/ )hI,J(Rx) ), which comprise the branching plane, and
3Nat � 8 mutually orthogonal directions, which span the
intersection or seam space. In the seam space the degeneracy is
lifted starting at no lower than second order, depending
on the curvature50,55 of the seam space. It is also convenient to
define sx

I,J(Rx) = sI,J 3 x̂ and sy
I,J(Rx) = sI,J 3 ŷ. For minimum energy

conical intersections, these are the only nonvanishing compo-
nents of sI,J.

We are now in a position to make a rigorous definition of a
conical intersection of two electronic states. Rx is a point of
conical intersection if and only if EI

a(Rx) = EJ
a(Rx) and neither

gI,J(Rx) nor hI,J(Rx) is zero.
The local topography of conical intersections has been care-

fully studied by Ruedenberg’s group, in a work denoted AXR.48

At Rx AXR identify three main topographies referred to as
peaked, intermediate, and sloped intersections. These topogra-
phies are pictured in Figure 1.

The peaked intersection has the character of a vertical double
cone in that the lower (upper) surface decreases (increases) in all
directions from the intersection. For these cones sx

I,J = sy
I,J = 0. For

the intermediate and sloped intersections, sx
I,J, sy

I,J 6¼ 0. In the
intermediate, semilevel crossing sx

I,J = )gI,J )t gI,J whereas in the
sloped crossing sx

I,J . gI,J. In these cones of rotation, similar
relations hold for sy

I,J and )hI,J ) t hIJ. A related classification56

based on the sI,J, gI,J, and hI,J, which explicitly takes account of the
potentially different magnitudes of gI,J and hI,J, has also been
proposed. This classification defines three quantities: pitch, FI,J =
[(gI,J)2 + (hI,J)2]1/2; asymmetry, Δ = [((gI,J)2� (hI,J)2)/((gI,J)2 +
(hI,J)2)]1/2; and tilt (sx

I,J, sy
I,J).

The above linear analyses have been extended to include
second-order terms. Robb and co-workers characterize the
topography of a point of conical intersection within the seam or
intersection space using a Hessian matrix projected into the inter-
section space.47,50 In this way points of conical intersection are
characterized in terms of standard potential energy surface notions,
that is, minima, maxima, and saddle points. Their analysis also leads
to an extension of the linear intersection adapted coordinates to a set
of curvilinear coordinates defined through second order.50,57 The use
of this analysis is discussed further in section 2 below.

The set of all points of conical intersection forms a connected
seam in the space of nuclear coordinates. It represents a general-
ized line in nuclear coordinate space and is a subspace of
dimension 3Nat � 8 in a space of dimension 3Nat � 6. There
is potentially more than one such (locally) connected seam.58,59

But whether such seams necessarily meet and how they meet
remains an open question.60 There are certainly instances when
two distinct seams intersect. We refer to such points as
confluences.61�63 Confluences are not points of conical inter-
section by the above definition since one of gI,J or hI,J is 0.

2. CURRENT STATE OF THE ART

In this section current work in the area of computational
nonadiabatic chemistry is summarized. While the work summar-
ized is representative of that being done in this field, the summary
is not exhaustive and I apologize in advance for omissions.

2.1. Conical Intersections and Radiationless Decay
Radiationless decay of electronically excited states is a funda-

mental issue in nonadiabatic chemistry. The example discussed
below, taken from the work of K€oppel and co-workers64 and
denotedGTGK, illustrates some of the electronic structure issues
associated with locating conical intersections and determining
the mechanism and outcome of excited state radiationless decay.
2.1.1. Radiationless Decay of Furan (C4H4O). Fast radia-

tionless decay provides prima facie evidence of the involvement of
conical intersections. In this section we overview the detailed study
of the mechanism of the photoinduced ring-opening for furan, by
GTGK. The process is summarized on the abscissa in Figure 2.
The goals of this overview are to illustrate the role of conical

intersections in fast radiationless processes and to describe issues
in the associated electronic structure treatments and in the
representation of the resulting potential energy surfaces and
their interactions. The states and their interactions were
described using high-quality equations of motion coupled
cluster single and double (EOM-CCSD) techniques65 based on
cc-pVDZ+ basis sets.

Figure 1. Peaked (a), intermediate (semilevel) (b), and sloped (c)
crossings after ref 48.
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GTGK performed their calculations in C2v or Cs symmetry. In
addition to the cost savings attributable to exploiting point group
symmetry in the electronic structure calculations, with point
group symmetry the conical intersections considered are acci-
dental symmetry allowed, rather than accidental same-symmetry
intersections. GTGK observed that the highly accurate EOM-
CCSDmethods can have trouble with accidental same-symmetry
conical intersections because of the nonhermitian character of
the EOM eigenvalue problem.66 This problem does not occur in
the multireference configuration interaction approach used to
define gIJ and hIJ in section 1.
Two excited states are of interest, S2 and S1. At the C2v

equilibrium geometry of the ground state S0, these states are 3s
Rydberg for S1(

1A2) and valence for S2(
1B2) in character. The

analyzed photodissociation process originates with the strong
S2r S0 absorption. A transition state S2(TS) (labeled

1A00(TS) in
Figure 2) was determined that leads from the Franck�Condon
region to a highly nonadiabatic region characterized by an S2/S1
energy-minimized conical intersection (MECI3) and an S1/S0
energy-minimized conical intersection (MECI4). MECI4 is found
to be in close proximity to the ring-opened structure denoted
A00(min) in Figure 2. GTGK also describe MECI1 and MECI2,
which lead to the ground state, avoiding the ring-opened structure.
On the basis of the electronic structure results summarized in
Figure 2, GTGK describe several feasible radiationless decay
paths, including (i) path 1 radiationless decay to S1(

1A2) through
conical intersections, MECI1, or MECI2, which are in the
Franck�Condon region, and (ii) two ring-opening paths,
paths 2 or 3. The electronic structure treatment is essential to
establish the possible mechanisms. Additional qualitative mechan-
istic information could be obtained from a determination of the sI,J,
gI,J, and hI,J vectors (see section 2.6.1). However, GTGK observe
that, in this case, reliable determination of the probability of the ring-
opening and its mechanism requires nonadiabatic dynamical
calculations.

To enable dynamics studies, GTGK have constructed partial
representations of the ab initio potential energy surfaces for
planar furan, using polyspherical67 coordinates. There are overall
15 polyspherical coordinates that describe all in-plane configura-
tions of furan; however, to reduce the complexity, approxima-
tions were introduced to reduce the representation to 11
polyspherical coordinates, which were divided into active and
harmonic degrees of freedom. For the active coordinates, a two-
dimensional energy grid was constructed for each potential
energy surface. With respect to the remaining nine coordinates,
the surfaces were represented using Taylor series up to second-
order terms. The resulting eleven-dimensional model surfaces
were tested against results of the ab initio calculations. These
tests showed that the model surfaces reproduce fairly well those
for all the states ranging from C2v symmetrical configurations to
Cs configurations in the vicinity of the A00(TS) transition state
and including points of minimum energy conical intersection.
The successful modeling of these portions of the ab initio
potential energy surfaces provides a good basis for dynamical
calculations. Note that the use of Cs symmetry means that for the
regions considered the electronic states can be considered
diabatic. The issue of constructing coupled potential energy
surfaces to study nonadiabatic dynamics is an important one in
the field of nonadiabatic quantum chemistry, and it is to this
matter that we now turn.

2.2. Diabatic States and the Representation of Adiabatic
Potential Energy Surfaces and Their Couplings

The solution of the nonadiabatic dynamics problem requires
the determination of ab initio electronic structure data, either in
its adiabatic form, energies, energy gradients, and derivative
couplings, or in the diabatic representation, where equivalent
information is carried in the matrix elements of the diabatic
Hamiltonian Hd. This data can be provided as required, directly
from ab initio calculations. In this case, to generate diabatic data,
a transformation to diabatic states that is independent of the
order in which the nuclear geometries are selected is required.
The determination of the ab initio data in this manner can be
quite costly and results uniformly in the use of more approximate
treatments of the electronic structure than would otherwise be
possible. Instead, in favorable circumstances, the ab initio data
can be provided by functional forms. In this approach a lower
density of higher-quality ab initio data is used to define a
functional form, which then provides the electronic structure
data as needed.

Because strongly coupled adiabatic surfaces, particularly those
involving conical intersections, are difficult to represent directly,
as in the example in section 2.1, diabatic representations are used.
The representation of ab initio determined coupled adiabatic
state potential energy surfaces using coupled diabatic state
Hamiltonians, Hd, is a well-studied problem in nonadiabatic
chemistry of significant current interest.68�76 Within this general
class of problems, it is useful to identify two subsets, descriptions
of bound molecules and descriptions of dissociative species.
Representations of bound molecules can be done in a set of
nonredundant nuclear coordinates. Representations of dissocia-
tive potential energy surfaces and their couplings require more
general coordinate representations.

Much of the work in this area is based on the vibronic coupling
model, introduced by K€oppel, Domcke, and Cederbaum over a
quarter century ago3,5 and updated by those workers77,78 and
others.68,70,79�81 Also notable are the perturbation theory-based

Figure 2. Cross-sections of the S0, S1, S2 potential energy surfaces along
the ring-opening reaction coordinate. Stationary points are denoted by
dots, minimum energy conical intersections MECI2�MECI4 are in-
dicated by arrows, and MECI1 is indicated by a cross. The molecular
structure is sketched for each stationary point. Three relaxation/decay
paths 1�3 after vertical transition to S2 are suggested. The region of the
potential energy surfaces between the two dash-dotted lines was fit using
polyspherical coordinates.
Reprinted with permission from ref 64. Copyright 2010 American
Institute of Physics.
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work of Mead, Truhlar, Varandas, and co-workers;82,83 the direct
diabatization schemes of Nakamura and Truhlar,84,85 based on
the earlier work of Atchity and Ruedenberg;86 the regularized
diabatization procedure of K€oppel et al.;28 the block diabatization
method of Pacher, Cederbaum, and K€oppel;24,87 the Shepard
interpolation-based method of Collins, Evenhuis, and co-
workers;72,88,89 and methods specific to triatomic molecules with
nontrivial point group symmetry.90,91

Recently we have introduced74,75,92 a promising approach for
using a diabatic Hamiltonian, Hd to represent Nstate ab initio
determined potential energy surfaces coupled by conical intersec-
tions. This approach represents an extension of the vibronic
coupling model, noted above, and can treat both bound and
dissociative electronic states. A principal and unique advantage
of this approach is that it includes derivative couplings in the
fitting procedure so that not only is it quantifiably diabatic but it
is maximally diabatic in a least-squares sense. This representa-
tion provides a removable22 approximation to the derivative
coupling,

In this approach, the diabatic Hamiltonian Hd, eq 5c, is an
Nstate � Nstate matrix whose elements are functions of internal
coordinates. The adiabatic energies (EJ

d,a) and wave functions
(eJ) are determined from the electronic Schr€odinger equation

½Hd � IEd, aJ �eJ ¼ 0 ð12Þ

2.2.1. Hd for Bound States. Our bound-state methodology
originally considered only a single, albeit arbitrary, point of
conical intersection.80 However, based on Lagrange multiplier
techniques developed in ref 74, we have extended that approach,
determining an Hd that can reproduce both the ab initio
determined locus and the local topography of a seam of conical
intersection.76 This is enabled by an analysis of a conical
intersection in orthogonal27 intersection adapted coordinates48

together with the above noted Lagrange multiplier constraint
capabilities. The matrix elements of Hd are given by

Hd
α, βðQ Þ ¼ EaαðQ 0Þδα, β þ ∑

N int

k¼ 1
V ð1Þ,α, β
k wk

þ 1=2 ∑
N int

k, l¼ 1
V ð2Þ,α, β
k, l wkwl

þ 1=3 ∑
N int

k, l,m¼ 1
V ð3Þ,α, β
k, l,m wkwlwm þ ::: ð13Þ

The V(n),α,β reflect the symmetry properties of the molecule. For
the bound molecules, the symmetry group is the point group of
the molecule at the origin Q0. For bound molecules the w are
simply a set of Nint nonredundant internal coordinates.93

2.2.2. Hd for Dissociative States. For dissociative states the
monomials in eq 13 are more complicated, owing to the need to
describe arbitrarily large displacements. Further the symmetry
group in question is the complete nuclear permutation inversion
(CNPI) group.94�96 In this case it is useful to view Hd as
expanded in a set of basis matrices

Hd ¼ ∑
Nf

n¼ 1
∑
Nstate

αeβ¼ 1

V ðnÞ,α, βfn,α, βMðα, βÞ ð14Þ

HereM(α,β) is anNstate(Nstate + 1)/2 matrix whose (α, β) element
is equal to 1, with all of the other elements equal to 0. The fn,α,β are
constructed from primitive fn, monomials of the form:

fn ¼
Y3
m¼ 1

Y
i < j

ðwmðri, jÞÞα
ðnÞ
m, i, j

Y
ði, j, k, lÞ

ðwi, j, k, l
4 ÞβðnÞi, j, k, l ð15Þ

It should be noted that in eq 15, (n) is a label, not an exponent, but
αm,i,j
(n) andβi,j,k,l

(n) are exponents. Here ri,j= |R
i�Rj|, 1e i, jeNat and

Ri are the atom-centered Cartesian coordinates of the ithNat nuclei
and (i, j, k, l) denotes the allowed combinations of four atoms. Four
distinct functions, wj, j = 1�4, of the internuclear separations are
used:

• Exponential functions w1ðri, jÞ ¼ e�s1ðri, j � ri, j aÞ ð16aÞ
• Gaussian functions w2ðri, jÞ ¼ e�s2ðri, j � ri, jbÞ2 ð16bÞ
• Reciprocal functions w3ðri, jÞ ¼ e�s3ðri, j � ri, j cÞ=ðri, j þ ri, j

dÞ
ð16cÞ• Dot�cross product functions

wi, j, k, l
4 ¼ ri, j � ri, k 3 ri, l=jri, jri, kri, lrj, krj, lrk, lj1=2

ð16dÞ
The dot�cross product functions are due to Collins and
coworkers.72 The remaining functions were suggested by the
single adiabatic potential energy surface work of Braams
and Bowman.97 Note that these functions form a redundant set.
The appropriate symmetry is imposed on the monomials using
standard projection operator techniques, giving fn,α,β.
2.2.3. Determining Hd. The expansion coefficients V(n),α,β

are determined by setting, for each geometry chosen, the Hd

predicted values of the energies, gradients, and derivative coupl-
ings to be equal to the ab initio determined values. The following
issues guide the construction of the algorithm for determining
the V:
(1) Because data at a large number of nuclear configurations

is used, the number of equations exceeds the number
of unknowns and the V must be solved in a least-
squares sense.

(2) It is sometimes necessary to require some of the ab initio
data to be exactly reproduced. For example, energy
difference must be exactly zero at a point of conical
intersection, to ensure that proper intersection-adapted
coordinates can be constructed; the branching plane
vectors gI,J and hI,J also need to be exactly reproduced,
so that the residual coupling is finite at a point of
intersection. It is also desirable that energies and gradients
be reproduced at critical points to ensure correct topology
of Hd. Lagrange multipliers (λj) are used to require the
corresponding equations be solved exactly. Points atwhich
these constraints are applied are called nodes.

(3) Some of theVmay not be well-defined by the available ab
initio data. This problem is overcome by introducing a
diagonal or flattening term, V†tV, where t is a positive
definite diagonal matrix.

(4) Some of the data have lower importance than others and
can be fitted with less accuracy. Examples include energies
and gradients at energetically inaccessible geometries and
derivative couplings at points where the states are well
separated. In these cases, the corresponding equations will
be weighted according to their importance.
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To sum up, coefficients V are obtained by solving a linear,
equality constrained, rank-deficient weighed pseudolinear
least-squares problem. The problem is solved self-consistently
using weighted normal equations with Lagrange multipliers and a
diagonal flattening term.74 The final equations are reported in ref 74.
The bound-state version of this algorithm has been used with
considerable success recently.76,98�101 Preliminary results for the
dissociative state version are encouraging.74,75

2.3. Nuclear Dynamics for Electronically Nonadiabatic
Processes

It goes without saying that the electronic structure aspects of
any nonadiabatic process are only half the problem. The nuclear
motion problem must be solved to determine the measured
quantities. After years of being relegated to an arcane theoretical
concept, it is now part of the conventional wisdom that conical
intersections are a significant player in the world of fast non-
adiabatic processes. Their presence makes nonadiabatic nuclear
dynamics computationally demanding. For nonadiabatic pro-
cesses the nuclear motion problem is important even if one is
only seeking mechanistic inferences. This point was emphasized
in our introductory example in section 2.1. For a conical intersec-
tion, low energy is not sufficient to establish its importance or
even its involvement in a nonadiabatic process. In a nonadiabatic
photochemical process, the wave packet evolves on the excited-
state potential energy surface until the region of a conical
intersection is reached. The question of which region of the
seam of conical intersection is encountered in a particular
nonadiabatic event is a key issue, because different regions of
the seam may well lead to different outcomes. Two factors help
decide where on the seam the nonadiabatic event occurs, the
initial conditions, and the topography of the excited-state surface.
To address these qualitative issues as well as the details of a
nonadiabatic process, a treatment of the nuclear motion problem
is required.

In this section we identify, by reference, several significant
techniques for treating nonadiabatic dynamics. Nonadiabatic
dynamics is intrinsically quantum mechanical because a change
of electronic states is involved. However, the nuclear motion can
be treated quantum mechanically, classically, or semiclassically.
Time-dependent quantum mechanical treatments include the ab
initio multiple spawning (AIMS) approach,102 the multiconfi-
guration time-dependent Hartree (MCTDH)103�105 method
and its direct formulation based on Gaussian wave packets,106,107

and the matching pursuit split operator Fourier transform
method.108 Classical treatments of the nuclear motion are also
available in the trajectory surface-hopping method.109 This
approach is much more cost-effective than the aforementioned
fully quantum methods but has its limitations, because, for
example, it does not correctly account for zero point energy.
For a careful analysis of potential issues with the surface-hopping
method, see ref 110. Quantummechanical methods based on the
Ehrenfest principle are also available, but they may suffer from
the fact that the nuclear motion takes place on an average
potential energy surface. One way to avoid the limitations of
the Ehrenfest treatment and the surface-hopping approach while
maintaining the computational advantages of classical mechanics
is the semiclassical initial-value problem approach, advocated by
Miller and co-workers.111,112

2.4. Nonadiabatic Effects near Surfaces and Interfaces
It was pointed out by Wodtke, Tully, and Auerbach113 that

nonadiabatic processes are preeminent at metal surfaces.

Semiconductor interfaces provide similar challenges. As ex-
plained in section 2.4.2 below, the existence of a high density
of energetically accessible states is key to the prevalence of
nonadiabatic effects in metals. A similar situation presents itself
in semiconductors. In this section, we illustrate these effects.
2.4.1. Semiconductor Interfaces. Electron transfer (ET) at

semiconductor surfaces drives important applications including
photocatalysis, photoelectrolysis, and solar energy production.
One example of this situation is the nonadiabatic photon-
induced electron transfer from an anchored electron donor to
semiconductor acceptor. This problem has been studied by
Prezhdo and co-workers.114,115 Both adiabatic and nonadiabatic
mechanisms are available for the ET, and the competition
between these mechanisms is an important issue.
To illustrate, we overview a recent study of a dye�semiconductor

system.115 The electronic structure of the dye�semiconductor
system and the adiabatic dynamics are simulated by ab initio
molecular dynamics (MD), whereas the nonadiabatic effects
are incorporated by a quantum-classical mean-field approach.
In the adiabatic mechanism, the coupling between the dye and
the semiconductor is large, and ET occurs through a transition
state along the reaction coordinate that involves a concerted
motion of nuclei. During adiabatic transfer, the electron remains
in the same adiabatic state that continuously changes its localiza-
tion from the dye to the semiconductor along the reaction
coordinate. Nonadiabatic effects decrease the amount of ET that
happens at the transition state but open up a new channel
involving direct transitions from the dye into the semiconductor
that can occur at any nuclear configuration (not necessarily a
conical intersection). Nonadiabatic transfer becomes important
when the dye�semiconductor coupling is weak, and when
perturbation theory is applicable, the rate of transfer is propor-
tional to the density of acceptor states.
An example of this type of nonadiabatic process is the

alizarin�TiO2 interface, where photoinduced electron transfer
was observed in 6 fs. The alizarin�TiO2 system has recently been
studied by the Prezhdo group,115 in a paper denoted DSP. In
contrast to the typical Gr€atzel cell systems,116 where the excited
state of molecular donors are in resonance with a high density of
semiconductor conduction band acceptor states, in TiO2 sensi-
tized with alizarin the molecular photoexcited state is at the edge
of the conduction band, an inference supported by high level
ab initio analysis of the optical absorption spectrum.DSP resolved
a controversy regarding the origin of the ultrafast ET by showing
that, although ultrafast nonadiabatic transfer is possible, the
observed ET proceeds mostly adiabatically. Their simulation
indicates that following photoexcitation the electron is injected
into a localized surface state within 8 fs and spreads into the bulk
on a 100-fs or longer time scale. The molecular architecture seen
in the alizarin�TiO2 system permits efficient electron injection
into the edge of the conduction band by an adiabatic mechanism
without the energy loss associated with injection high into the
conduction band by a nonadiabatic process.
2.4.2. Metal Surfaces. Nonadiabatic processes involving

molecules, particularly open-shell molecules, interacting with
metal surfaces are inherently different from those involving
gas-phase molecules. This, Tully and co-workers,117 in a work
denoted RST, observe, is a consequence of the large number of
closely spaced states in the vicinity of the Fermi level, provided by
the metal. Consider Figure 3, taken from RST. When O(3P)
approaches a closed-shell species, here H2, the interaction
is unfavorable and the 3P state splits as indicated in Figure 3a.



488 dx.doi.org/10.1021/cr2001299 |Chem. Rev. 2012, 112, 481–498

Chemical Reviews REVIEW

The components of the 3P state cross a strongly bound 1A0 state
correlating asymptotically with O(1D) + H2, as well as with
ground-state water in the interacting region. However, the
probability of a nonadiabatic transition, an intersystem crossing
from the triplet manifold to the singlet manifold, is small, since
the spin�orbit coupling is weak. The possibility of oxygen
changing its spin-state from triplet to singlet changes dramati-
cally when H2 is replaced by, for example, a gold surface. Here
two things change. Gold makes available a continuum of orbitals
in the vicinity of the Fermi level. It also impacts the size of the
spin�orbit interaction through the heavy atom effect.118�121 In
the heavy atom effect the molecular orbitals of a low atomic
number (Z) atom or molecule (here oxygen) are responsible for
the spin�orbit coupling. Because Z is small, the spin�orbit
coupling is weak. However, as the oxygen approaches the metal
surface, the metal orbitals overlap with those of oxygen and the
spin�orbit couplingmatrix element acquires a contribution from
the high Z metal, which does not reflect the spin-state of the
metal. This increase in the spin�orbit interaction facilitates a
change in the spin-state of the oxygen and an overall change in
the spin-state of the oxygen�metal system. An additional,
more generalizable, mechanism applicable in the O(3P) + gold
surface is noted by RST. In this mechanism the spin-state of
the oxygen�metal system is unchanged but the spin-state of the
oxygen and of the metal moieties each individually change. In this
case, near the singlet�triplet intersection the oxygen flips a spin
in its 2p shell going from O(3P) to O(1D) while the metal does a
particle-to-hole singlet�triplet excitation near the Fermi level.
This creates an electron�hole pair (EHP) on the metal. This
scenario is not feasible in Figure 3a because of the high cost of
flipping a spin on H2. This simultaneous spin flip is equivalent to
a simultaneous two-electron transfer in which an electron with
one spin is transferred from near the Fermi level to the metal
while an electron with the opposite spin is transferred to an
unoccupied near Fermi level orbital of the metal. Head-Gordon
and Tully have shown122,123 that this creation of EHPs can be
described as molecular friction. From the above analysis it is seen
that this EHP or molecular friction is able to drive a variety of
configurational changes in the electronic state of a molecule
approaching a metal surface.
Also shown in Figure 3b (see red circle) is the transient

negative ion mechanism, introduced by Gadsuk.124 In this use of
Figure 3b, the metal is assumed to have one fewer electron when

the oxygen is negatively charged. Thus, a neutral molecule
interacting with a metal surface may, in the course of its
interaction, create a temporary transient negative ion state. This
negative ion�positive metal arrangement causes energy transfer
between the molecule and the metal. We first point out that the
intersection in Figure 3b may be an avoided or a conical
intersection. Further its location and energy may be modified
by the creation of EHP.
These changes in the state of the molecule interacting with the

metal surface provide for a variety of energy-transfer processes.
The correct description of these processes requires both accurate
description of the relevant potential energy surfaces and their
interactions and the nonadiabatic dynamics.
The dynamics of NO scattering from Au(111) illustrates the

previously described processes and the competition between
adiabatic and nonadiabatic alternatives.125 Tully and co-workers
observe that for NO (v = 0) adiabatic and nonadiabatic simula-
tions generally agree and are in good accord with experimental
results.126 For NO (v = 2) the adiabatic and nonadiabatic results
differ significantly, with the nonadiabatic results being in better
accord with the experiment. Tully and co-workers explain this in
terms of deeper excursions into the ionic regions of Figure 3,
where nonadiabatic effects increase. For NO (v = 15) the
differences between the adiabatic and nonadiabatic results are
even more striking, with trapping of NO on the surface, some-
what surprisingly, enhanced by nonadiabaticity, an observation
carefully explained in ref 117.

2.5. Effects of the Environment on Nonadiabatic Processes
It is often the case that nonadiabatic processes occur not in the

gas phase but in complex environments, including solutions and
biological environments such as proteins. The environment
exerts its effect on nonadiabatic processes in several ways. One
obvious interaction is energy dissipation, that is, the irreversible
transfer of energy from the system to the environment. A second
type of interaction is more subtle, reflecting differential interac-
tions of the distinct electronic states with the environment. This
can serve to move or even remove conical intersections between
the potential energy surfaces in question.

The partitioning of the Hamiltonian into bath or environment
and system modes can be accomplished in many ways. A first-
principles approach to this partitioning has been introduced by
Gindensperger, Burghardt, and Cederbaum,127,128 denoted
GBC1 andGBC2, respectively, below. They observe that ultrafast
dynamics induced by conical intersections is intrinsically quan-
tum mechanical in nature and that while powerful quantum
dynamical techniques such as the multiconfiguration time-de-
pendent Hartree (MCTDH) method103,129 can handle a con-
siderable number of degrees of freedom—about 20�30, in
conical intersection situations—quantum dynamical descrip-
tions of general multimode systems is not feasible.

GBC1 developed an approximate strategy that allows for the
treatment of the dynamics in high-dimensional conical intersec-
tion situations, possibly including the effects of dissipation. They
describe a time-scale based, three-tier partitioning. A system�
environment partitioning in introduced, where the “system” part
corresponds to a subset of dominant modes, in conjunction with
a transformation of the environmental modes to (few) effective
modes, which accurately account for the short-time dynamics at
the conical intersection. The effective modes couple, in turn, to a
residual environmental Hamiltonian—comprising potentially
very many modes—which influences the dynamics on intermediate

Figure 3. Schematic representation of multiple potential energy sur-
faces and their crossing that can arise when an open-shell species, here
an oxygen atom or ion, interacts with a molecule (plate a) or a metal
(plate b).
Reprinted with permission from ref 117. Copyright 2009 American
Chemical Society.
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and long time scales. The impact of the (many) environmental
modes on the system is thus recast in terms of a primary
interaction between the system and the effective envi-
ronmental modes, and a secondary process by which the effective
modes couple to the “residual environment”. The presented work
proposes, for the first time, a dynamical description in terms of
effective modes in a general conical intersection situation. In
particular, it is shown that exactly three effective modes are
required in the general case in the short-time limit.

GBC2 provide rules to estimate the quality of the effective-
mode formulation described above for true macrosystems. A key
parameter is the effective-mode period. Artificial recurrences, due
to the neglect of the rest of the environment, are expected to
occur at these periods. Regarding the autocorrelation functions,
the results given by this approach are thus expected to be good up
to the first artificial recurrence, i.e., up to about the value of the
smallest of the effective-mode periods. This tendency is general.
However, due to the interaction of the effective modes with the
modes of the system via the conical intersection, the artificial
recurrences may be altered and sometimes even suppressed.

Another promising approach to this problem exploits hybrid
quantum mechanical (QM), molecular mechanical (MM), and
QM/MMmethods, developed for excited states by Warshel and
Levitt130 and subsequently by others.131,132 In this approach, the
total system is partitioned into a part that is treated quantum
mechanically, the system, and a part that is treated by molecular
mechanics, the environment. The electronic Hamiltonian is
partitioned as133

He ≈ HQM þ HMM þ HQM=MM

where HQM is the exact (Coulomb approximation) Hamiltonian
for the system, HMM is the molecular mechanics force field, and
HQM/MM describes the interaction. Themost problematic part of
this decomposition is the HQM/MM part, particularly when there
exist covalent bonds between the QM and MM regions. This
“link atom” problem, which is particularly challenging when
ground and excited states exist, has been addressed using the
multicentered valence electron effective potential (MC-VEEP)
method.134

Martínez and co-workers133 have used this approach to report
QM/MM simulations of the spectra and excited-state dynamics
of biologically relevant chromophores including green fluores-
cent protein (GFP), photoactive yellow protein (PYP), and
retinal protonated Schiff base (RPSB). Here we briefly review
the GFP work, which is representative.

A model GFP chromophore p-hydroxybenzylidene imidazo-
linone (HBI), pictured in Figure 4, was used. In the protein
environment GFP fluoresces, but in alternative environments,
solution or gas phase, the fluorescence is quenched. As seenwhen
comparing the gas-phase and solution-phase results, quenching is
much slower in the gas phase than in solution. The two torsional
angles pictured in Figure 4 are key.

Note that conjugated π-systems are a recurring theme in
biosystems. The fluorescence is initiated by an electronic excita-
tion of the π�π* type, which enables twisting about ϕI or ϕp.
This twisting leads to the region of an S1/S0 conical intersection
where quenching can occur. Martínez and co-workers observe
that at least three explanations are possible for the different
behaviors observed in the gas phase, solution, and protein: (i)
different S1 dynamics resulting in dramatically different arrival
times at the conical intersection seam; (ii) differences in the
accessibility of the conical intersection; and finally (iii) differ-
ences in the local topography of the conical intersection, that is,
differences in the sI,J, gI,J, and hI,J parameters. They show that the
correct answer is (ii). In the gas phase, the minimum energy
conical intersection lies above a minimum on S1, creating a local
barrier to reaching the conical intersection. The interaction with
the solvent changes this topography, making the S1/S0 conical
intersection the lowest energy point on the S1 potential energy
surface in this region. These studies were carried out at the
CAS(2,2)/6-31G level of electronic structure theory, which was
shown to mimic higher-level treatments of the electronic struc-
ture, thereby permitting treatment of the nuclearmotion usingAIMS.

Turning now to the protein environment, here the full GFP
chromophore was modeled in a protein environment, using
QM/MM techniques, based on a semiempirical configuration
interaction wave function. The gas-phase calculations showed
that quenching of S1 depends on torsional motion that allows the
system to reach the S1/S0 conical intersection seam. Thus, it is
not surprising that dynamics simulations of the full GFP chro-
mophore in a protein environment find relatively small changes
in ϕI or ϕp over at least several picoseconds, compared to twisting
on the subpicosecond time scale observed in solution.

2.6. Control of Nonadiabatic Chemical Dynamicswith Lasers
2.6.1. Routing and the Branching Plane. Conical inter-

sections represent points at the intersection of potential energy
surfaces where access to distinct breakup channels is possible.
The resulting influence of conical intersections on nuclear
dynamics is referred to as routing. This is illustrated in Figure 5
for the reaction of OH with H2. There it is seen how motion
along modes defining the branching plane can lead to distinct
outcomes. Motion along +g pushes the OH and H2 molecules
apart and at the same time decreases both r(HH) and r(OH)
bond lengths; therefore, it is reasonable to assume that the
OH�H2 complex will continue to move apart and dissociate
to OH�H2, as is indeed found to be the case for representative
gradient-directed paths.135 Likewise, displacement along �g has
the exact opposite effect. The OH and H2 groups move closer
together and their respective bond lengths grow slightly. It
follows that such motion could be the start of a path leading to
H2O + H, as is confirmed when gradient-directed paths are
followed.135

The ability of the branching plane to influence molecular
motion makes nonadiabatic systems exhibiting conical intersec-
tions ideal candidates for laser control of chemical reactions.136

Below we describe how this idea has been used.
2.6.2. Controlling Photoisomerization. Domcke and co-

workers137 used optimal control techniques to manipulate a
model describing cis�trans photoisomerization of retinal in
rhodopsin including a conical intersection. Coherent control
mechanisms, in which laser pulses work cooperatively with a
conical intersection, were studied. The authors carefully con-
sidered the relation between conical intersection topography and

Figure 4. HBI, p-hydroxybenzylidene imidazolinone, a model chromo-
phore for GFP. Isomerization described in terms of ϕp and ϕI. See text.
Reprinted with permission from ref 133. Copyright 2009 American
Chemical Society.
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pulse shaping. Optimally designed pulses largely consist of
shaping subpulses, optimal pulses followed by an excitation
subpulse that prepare a wave packet, which is localized along a
reaction coordinate and has little energy in the coupling mode,
hI,J. This shaping process achieves a high target yield. A related
study was carried out by Flores and Batista.138 These authors
achieved control over product yields at finite time after photo-
excitation by externally changing the relative phases of the
photoexcitation pulses and consequently affecting the interfer-
ence phenomena between individual wave packet components.
Extensive coherent control over transient populations was pre-
dicted, despite the ultrafast decoherence phenomena induced by
the electronic nonadiabaticity.
2.6.3. Cyclohexadiene (CHD)�Hexatriene (HT) Photo-

isomerization. The cyclohexadiene (CHD)�hexatriene (HT)
photoisomerization is a much studied system.139 Important
theoretical work on this system has been done by Hofmann
and de Vivie-Riedle.140,141 Here we excerpt the work of
Nakamura’s group. It is observed experimentally that, when cyclo-
hexadiene (CHD) is photoisomerized (in solution) producing
both CHD and hexatriene (HT), the CHD/HT ratio is ∼6:4.142

Nakamura has suggested that laser manipulation of the branching
plane dynamics can be exploited to achieve control of, that is, alter,
this measured branching ratio. Nakamura and co-workers studied
manipulation of the cyclohexadiene (CHD)�hexatriene (HT)
photoisomerization computationally.143�145 The process to be
manipulated can be summarized as follows: an initial wave packet
is excited from S0 to S1 near the equilibrium geometry of CHD.
After evolving on S1, the wave packet encounters an S0�S1 conical
intersection in the vicinity of a five-membered ring structure,
pictured in Figure 6B. The two coordinates used to describe the
branching plane for this conical intersection (R, θ) are shown in
Figure 6A.
In this region the wave packet bifurcates into paths leading to

both ground-state CHD and HT. Nakamura’s manipulation of
his computational simulation of the branching ratio is accom-
plished as follows: an initial wave packet with directed momentum
pointing toward the five-membered ring conical intersection is
(i) prepared in the ground state of CHD and (ii) efficiently

excited to S1 using a quadratically chirped pulse. The directed
wave packet moves directly from the Franck�Condon region on
S1 to the five-membered ring conical intersection, avoiding other
regions sampled by an unoriented initial wave packet. The
directed wave packet produces mostly HT on S0 after passing
through the conical intersection. This is in contrast to the
∼50:50 mixture produced by a simulation of the unoriented
wave packet. This 50:50 CHD/HT branching ratio is in good
accord with the ∼60:40 measured ratio and serves to lend
credibility to the computational analysis.
2.6.4. Vibrationally Mediated Photodissociation of

NH3.Wenow turn to a related problemwhere the computational
analysis is less satisfactory at present. Vibrationally mediated
photodissociation provides an experimental means to manip-
ulate the outcome of nonadiabatic photodissociation involving
conical intersections. The initial vibrational level, n, of a mole-
cule prior to photodissociation can affect the outcome of
the dissociation as measured by the branching fractions. A
particularly dramatic example of this is the photodissociation
of NH3,

NH3ð~X1A1, nÞ þ hv f NH3ð~AÞ f NH2ð~X , ~AÞ þ H ð17Þ

described in a now classic series of papers by Crim’s group.146�148

Crim determined that photodissociation of NH3 with an excited
N�H symmetric stretch produces primarily ground-state NH2

along with a H atom. However, the situation was very different
for electronically excited molecules containing a quantum of
antisymmetric N�H stretch. Decomposition from that state
produces almost exclusively electronically excited NH2(~A).
Truhlar and co-workers have addressed the question of mode

specificity in reaction 17.110 It is dfficult to use direct dynamics
address this question. In direct dynamics the electronic structure
data, energies, energy gradients, and derivative couplings are
provided “on demand” when called for by the (time-dependent)
dynamics simulation. The “on-demand” incorporation of ab
initio data makes the use of state of the art electronic structure
methods impractical. To circumvent the accuracy issue, Truhlar
and co-workers73,149 developed a sophisticated coupled diabatic
state representation of the 1,21A states of NH3 based on the
4-fold way diabatization scheme.85 They then used those coupled
potential energy surfaces with several quasi-classical trajectory
dynamics schemes to simulate reaction 17.110 Their work
provided a deep understanding of the nonadiabatic dynamics
and issues that must be addressed when simulating the experi-
ment. They conclude that it was disappointing that their calcula-
tions do not reproduce the experimental mode specificity at the
experimental energies. They observe that further work is re-
quired to determine the origin of the discrepancy. More recently

Figure 6. (A) Two-dimensional Jacobi coordinates used in the wave
packet dynamics. (B) Schematic molecular geometry at the five-mem-
bered ring S1�S0 conical intersection minimum (the minimum on the
conical intersection hypersurface).
Reprinted with permission from ref 145. Copyright 2010 American
Chemical Society.

Figure 5. g�h plane for C2v conical intersection in reaction of OH(A)
with H2; g vector solid arrows and h vector unfilled arrows.
Reprinted with permission from ref 135. Copyright 2000 American
Institute of Physics.
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a fully quantummechanical dynamics treatment, based on theHd

obtained by Truhlar’s group,73,149 has also failed to reproduce the
observed mode specificity.150

2.6.5. Controlling Radiationless Decay. Another instance
of using lasers to control radiationless decay is provided by
Christopher, Shapiro, and Brumer.151 They use quantum inter-
ference induced by laser excitation to manipulate radiationless
decay in a model pyrazine system. By preparing a linear combi-
nation of zeroth-order states on one Born�Oppenheimer sur-
face, quantum interference can either maximize or minimize the
population that undergoes a radiationless transition at a preset
target time. Phase control is achieved by the presence of over-
lapping resonances. Significantly, conical intersections were not
explicitly exploited in this analysis.

2.7. Conical Intersections and Mechanism for Nonadiabatic
Reactions in Photobiology

As we have seen in previous sections in this review, non-
adiabaticity is a recurring theme in biological systems. From the
perhaps myopic perspective of this review, this reflects nature’s
effective use of conical intersections to harness energetic photons
in general and sunlight in particular.
2.7.1. Electron-Driven Proton Transfer. As observed pre-

viously in the work of Martínez and co-workers,133 conical
intersections play a key role in quenching fluorescence in
biologically relevant molecules. Sobolewski and Domcke152 have
emphasized the general importance of electron-driven proton-
transfer (EDPT) processes in the functioning of hydrogen-
bonded biologically relevant systems including organic photo-
stabilizers. Fluorescence quenching in protic solvents, and the
photostability of biological molecules, are also related to EDPT
processes. Sobolewski and Domcke construct a mechanistic
paradigm for the EDPT reaction. The paradigm is summarized
in Figure 7, taken from ref 152 and elucidated here.
In the first step of EDPT, absorption takes ground-state

X�H 3 3 3Y to excited (X�H 3 3 3Y)*, typically a
1ππ* state. This

is followed by an avoided crossing with a charge-transfer state of
1πσ* character (although 1ππ* may be charge transfer), resulting
in a highly polar excited state. The proton follows the electron
stabilizing the biradical, producing X* 3 3 3 (H�Y)*. Back transfer

of the electron at the S1�S0 conical intersections results in rapid
internal conversion, producing X�

3 3 3 (H�Y)+, which then
decays to the original ground state X�H 3 3 3Y. This motif was
deduced from elaborate electronic structure calculations of (i)
hydrogen transfer of photoacids to hydrogen-accepting solvents,
(ii) photobases in a hydrogen-donating solvent environment,
(iii) fluorescence quenching via hydrogen bonds, and finally (iv)
intramolecularly hydrogen-bonded π-systems, which revealed
the mechanism of excited-state intramolecular proton transfer
(ESIPT) as explained in ref 152.
2.7.2. Intersection Space, Reaction Mechanisms, and

Nonadiabatic Dynamics. It was noted in section 1 that points
of conical intersection are not isolated but are continuously
connected, forming the intersection or seam space. Robb and co-
workers have identified the relation between nuclear motion and
the locus of the seam space as key to understanding the
mechanism of nonadiabatic processes.47,50 They have studied
the dynamics using surface hopping and more advanced quan-
tum dynamics techniques based on the MCTDH approach.106,107

Robb and co-workers emphasize two key points: (i) the relevant
points in the intersection space are those where the reaction path
meets the seam, and this need not be at the minimum of the seam;
and (ii) radiationless decay takes place in the branching plane as one
passes through the conical intersection.
As an example of this, Robb cites153,154 the reversible protein

photoreceptor, photoactive yellow protein (PYP), mentioned
previously in this review. This protein consists of a chromophore
p-coumaric acid, again a π-conjugated system, bound to a
protein. The key step is a photoinduced cis�trans isomerization.
Cis�trans isomerizations involving conical intersections are also
a recurring theme in this review. Robb and co-workers compare
the isolated chromophore with the chromophore in the protein
environment. PYP provides a dramatic example of a situation
where the reaction path is perpendicular to the branching plane
coordinates. The chromophore both in vacuum and in the
protein exhibits an extended seam along the cis�trans isomer-
ization coordinate. Skeletal motions constitute the branching
plane. In vacuo motion along the cis�trans isomerization
coordinate encounters a minimum and a transition state before
encountering a second minimum at the half twist. In the protein
the S1 potential energy surface is stabilized so that the conical
intersection seam intersects the reaction path. Nuclear dynamics
calculations serve to quantify these differences. In the isolated
chromophore, the system never makes it to the conical intersec-
tion where quenching occurs. In the protein environment, the
quenching fraction of trajectories was ∼0.3, close to the experi-
mental quantum yield of 0.35. In the interest of full disclosure, we
note that Martínez and co-workers155 have demonstrated the
importance of the electrostatic environment in determining the
outcome of photoexcitation in PYP.

2.8. Nonadiabatic Photoelectron Spectroscopy
Photoelectron spectroscopy and its time-resolved form are

powerful tools for quantifying molecular electronic structure and
molecular dynamics including both adiabatic energy transfer and
nonadiabatic energy transfer including intersystem crossing and
internal conversion. This is demonstrated in the plethora of review
articles that have appeared in recent years.156�163 Although this
review focuses on time-independent computations, time-resolved
simulations for states coupled by conical intersections have been
reported.164 In photoelectron spectroscopy an electron is photode-
tached (photoionized) from an anion (neutral) producing a neutral

Figure 7. Schematic view of the electron-driven proton transfer
(EDPT) process in intermolecularly hydrogen-bonded systems. Abbre-
viations: LE, locally excited state; CT, charge-transfer state; ET, electron
transfer; IC, internal conversion. The colors indicate schematically the
mixing of the electronic wave functions at the conical intersections.
Reprinted with permission from ref 152. Copyright 2007 American
Chemical Society.
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(positive ion), the residual molecule. The electrons are collected, and
the resulting spectrum is that of the residual molecule. Below we will
use the language of anion-photodetachment spectroscopy, although
the results are equally applicable to photoionization. The effect of the
spin�orbit interaction is considered when appropriate.
2.8.1. General Formulation—Vibronic Coupling Model.

In the vibronic coupling model, the wave function for the
photodetached species is given by eq 5b,

ΨT
KðqN ,wÞ ¼ ∑

Nstate

I¼ 1
Ψd

I ðqN ;wÞζKI ðwÞ ð18aÞ

where we use w to denote Nint internal coordinates and qN =
(q1, q2, ..., qN) to denote the coordinates of the N electrons.
The ζI

K(w) are in turn expanded in themultimode vibrational basis

ζKI ðwÞ ¼ ∑
m
dKI,mΘ

ðnÞ
m ðwÞ ð18bÞ

where theΘm
(n)(w) are expressed as multimode products

ΘðnÞ
m ðwÞ ¼

YN int

j¼ 1

χðnÞ, jmj
ðwjÞ ð18cÞ

Here 0emj <Mj and χm
(n),j is themth harmonic oscillator function

associated with the jth mode. Using Hd determined as in section
2.2, the nonrelativistic vibronic Schr€odinger equation, eq 5a,
becomes

∑
k, n

Hl, k
m, nd

K
k, n ¼ ETKd

K
l,m ð19aÞ

where 1 e k, l e Nstate and

Hk, l
m, n ¼ ÆΘðnÞ

m ðwÞjTnucδk, l þ Hd
k, lðwÞjΘðnÞ

n ðwÞæ ð19bÞ
Hm,n
k,l is an NT by NT matrix, where

NT ¼ NstateNvib ð20aÞ
in which

Nvib ¼ Π
N int

i¼ 1
Mi ð20bÞ

From the form ofHd for bound states, eq 13, the matrix elements
of Hm,n

k,l are easily evaluated.79 However, although the nonzero
elements ofHm,n

k,l grow only linearly165 withNvib, from eq 20b,Nvib

grows rapidly withNint. To deal with the large dimension ofHm,n
k,l ,

Schuurman, Yarkony, and co-workers developed an open-ended,
fine-grained, parallel, Lanczos-based algorithm to determine the
coupled vibronic wave functions.101,165 The open-ended, fine-
grained, parallel design of the algorithm not only dramatically
reduces the time to solution for the nonadiabatic wave function but
also permits basis set expansions currently on the order of 10
billion terms, 100 times the size that can be treated using
conventional, single-processor methods.165

The wave function for the anion with total energy Eα
T has the

following form:

ΨT, an
α ðqNþ1, w̅Þ ¼ ΨaðanÞ

0 ðqNþ1, w̅ÞΘðanÞ
a ðw̅Þ ð21aÞ

where Ψ0
a(an) is the ground electronic state of the anion,

w = T(Q�Q0,(an)),Q denotes a set ofNint internal coordinates,

ΘðanÞ
a ðw̅Þ ¼ Π

N int

j¼ 1
χðanÞ, jaj

ðw̅jÞ ð21bÞ

Θa
(an)(w) is the vibrational wave function for the anion in its

ground electronic state, and χm
(an),j is the mth harmonic oscillator

function associated with the jth mode of the anion. Here Q0,(an)

is the ground-state equilibrium geometry of the anion and the w
are its normal coordinates, with the ground vibrational state
denoted a = (0, 0, ..., 0) = 0. We call attention to the fact the
neutral coordinates (w) and anion coordinates (w) need not be
the same. This is the origin of the Duschinsky effect.166,167 It is
discussed further following eq 23c.
The spectral intensity distribution function, I(E), is

given by

IðEÞ ¼ ∑
α
FðαÞ∑

K
jAα,K j2δðE� ðETK � ETαÞÞ ð22aÞ

where F is the population of the anion state α and the amplitude,
Aα,K, is given by

Aα,K ¼ ÆΨT, an
α ðqNþ1, w̅ÞjμjΨT

KðqNþ1,wÞæqNþ1,w ð22bÞ
Note that in eq 22bΨK

T is anN + 1 electron function rather than
theN-electron function as in eq 18a. This reflects an approximate
treatment of the electron-detachment process, the sudden ap-
proximation, in which the detached electron resides in an orbital
that is orthogonal to the orbitals in the residual molecule and
approaches a plane wave for large values of the electron
coordinate. The residual molecule is unaltered by the inclusion
of the orbital for the detached electron. Inserting eqs 18a and 21a
into eq 22b gives

Aα,K ¼ ∑
I,m

dKI,mÆΘ
ðaÞ
a ðw̅Þjμ0I,K, kjΘðnÞ

m ðwÞæw

≈∑
I,m

dkI,m f amμ
0
I,K, kðwFCÞ ð23aÞ

In eq 23a the Franck�Condon approximation has been used to
derive the approximate equality and

μ0I,K, kðwÞ ¼ ÆΨaðanÞ
0 ðqNþ1, w̅ÞjμNþ1jAcΨd

I ðqN ,wÞϕkKðqNþ1ÞæqN þ 1

ð23bÞ

f am ¼ ÆΘðanÞ
a ðw̅ÞjΘðnÞ

m ðwÞæ

¼ Æ Π
N int

j¼ 1
χðanÞ, jaj ðw̅jÞj Π

N int

j¼ 1
χðnÞ, jmj

ðwjÞæ ð23cÞ

In eq 23b, k labels the momentum of the outgoing electron
and the intersystem antisymmetrizer Ac insures that the ket,
Ac(ΨI

d(qN,w)ϕK
k(qN+1)), is fully antisymmetric. The multidi-

mensional Franck�Condon integrals, in eq 23c are evaluated
using recursion relations168�173 adapted to parallel processing.174

In adiabatic simulations, w and w are the normal coordinates
of anion and neutral, respectively. In this case, the Franck�
Condon overlaps in eq 23c give directly the peak heights in a
spectral simulation. In terms of Q, these coordinate systems are
in general shifted and rotated relative to each other, resulting in
the Duschinsky rotation effect.
The determination of the electronic transition moment in

eq 23b is a significant issue in photoelectron spectroscopy.175�177

As noted above, eq 23b reflects the fact that the wave function for
the residual molecule plus detached electron is written as an
antisymmetrized product of the vibronic wave function for the
Kth channel times a geometry-independent orbital ϕk

k(qN+1).
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This is an approximation, and we have recently derived a more
precise result.178,179 This issue, which is properly the province of
the electron-scattering community,180�183 is discussed further
below. However, it is possible to make significant progress
with simple approximations for μI,k,k

0 , as we show in sections
2.8.3 and 2.8.4.
2.8.2. Spin�Orbit Effects.When the spin�orbit interaction

is included, the total Hamiltonian becomes

HT, so ¼ Tnuc þ He þ Hso t HT þ Hso ð24Þ
where Hso is the spin�orbit interaction in the Breit�Pauli
approximation.184 The relativistic wave function satisfies

ðHT, so � ET, soM ÞΨT, so
M ðqN ,wÞ ¼ 0 ð25Þ

For molecules composed of atoms in the third period or earlier,
the solutions of the relativistic Schr€odinger equation can be
expanded in terms of the eigenstates of the nonrelativistic
Schr€odinger equation. This approach has both conceptual
and computational advantages. When heavier atoms are
present, an alternative approach, based on a elegant analysis
of the symmetry of Hso, which treats the spin�orbit and
Coulomb contributions more equivalently, due to Poluyanov and
Domcke is available.185,186

Instead of working in the standard Ms basis we use the time-
reversal adapted basis introduced by Mead.187 This basis sim-
plifies the form of the matrix elements ofHso. For doublet states,
which is the case we deal with, the basis is given by

�Ψe, d
l,(ðqN ,wÞ ¼ (ð1=√2Þ½ ~Ψe, d

l, 1=2ðqN ,wÞ
( i ~Ψ

e, d
l, �1=2ðqN ,wÞ� ð26Þ

where Ψ~ l,Ms

e,d is the diabatic wave function in eq 4a, in which we
have explicitly included the Ms value. Then the relativistic wave
function ΨM

T,so is expanded as

ΨT, so
M ðqN ,wÞ ¼ ∑

K, s
FMK, sΨ

T
K, s

t ∑
K, s, l,m

FMK, s½dKl,mΨd
l, sðqN ,wÞΘðnÞ

m ðwÞ� ð27Þ

where s = ( and the Fk,sM satisfy

EðnrÞ 0
0 EðnrÞ

 !
þ Hso

þ,þ Hso
þ,�

Hso
�,þ Hso

�,�

 ! !
FMþ
FM�

 !

¼ ET, soM

FMþ
FM�

 !
ð28Þ

with EI,J
(nr) = δI,JEJ

T and HI,s;J,s0
so = ÆΨI,s

T |Hso|ΨJ,s0
T æ for s,s0 = (.

From the definition of HI,s;J,s0
so , the spin�orbit interaction is seen

to be, in a Franck�Condon-like approximation, a raw electronic
matrix element reduced by a vibrational overlap term.188 This
reduction of the raw electronic matrix element is an example of
the Ham reduction effect.189

From eq 27 we can show188

IðsoÞðEÞ ¼ ∑
M
IðsoÞM,αδðE� ðET, soM � ETαÞÞ ð29aÞ

where

2IðsoÞM,α ¼ ∑
K
FMK,þAα,K

" #2
þ ∑

K
FMK,�Aα,K

" #2
ð29bÞ

which exhibits the promised intensity borrowing.
An example of the use of these computational tools to predict

and explain measured spectra follows. This example also demon-
strates the value of the g�h plane in understanding conical
intersections.
2.8.3. Photoelectron Spectra of Isopropoxide.99 In this

section a simulation of the photoelectron spectrum of isoprop-
oxide, reported in ref 99 and denoted DY, is reviewed. The
corresponding neutral molecule isopropoxy is a double, methyl
for hydrogen, substitutional isomer of the well-studied
Jahn�Teller molecule, methoxy, CH3O, whose

2E ground state
is known to exhibit both a Jahn�Teller instability and the effects
of the spin�orbit interaction.190Methyl substitution splits the 2E
state into a 2A0 state and a 2A00 state. Lineberger and co-workers,
who measured the photoelectron spectrum of isopropoxide over
a decade ago,191 reported the splitting of these states, the ~A�~X
separation, to be 1225 ( 65 cm�1 in isopropoxy. This assign-
ment was based on absence of this line from an adiabatic
simulation of the ground state and supported by the intuitive
but, as we show later, incorrect assumption that the ~A�~X
splitting in isopropoxy should be larger than that in ethoxy,
because the former is more perturbed, compared to methoxy.
Subsequently Miller and co-workers192 determined, from dis-
persed fluorescence experiments, the ~A�~X separation in iso-
propoxy to be only 68 ( 10 cm�1. In an unpublished slow
electron velocity-map imaging (SEVI) result, Neumark193 also
found a similarly positioned transition at 68 cm�1 in isopropoxy,
consistent with Miller’s result.
Using the algorithms described in sections 2.8.1 and 2.8.2, DY

were able to understand and explain these discrepancies. In this case,
the ability to include the spin�orbit interaction was essential, as was
the ability to describe a conical intersection in terms in terms of
unique g and h vectors. The explanation for the above observations
is as follows. Not surprisingly, single adiabatic state representations
of the electronic states are poor predictors of these spectra.
(i). g�h Plane Analysis. DY showed that, perhaps counter-

intuitively, isopropoxy is actually close to the parent methoxy.
This was determined by comparing the g and h vectors for
isopropoxy with those of methoxy. The g vectors illustrate the
situation. In methoxy the g vector is principally a —OCH bend.
As Figure 8 illustrates, this is also the case in isopropoxy but not,

Figure 8. g for isopropoxy resembles that of methoxy. That for ethoxy
does not.
g vector from isopropoxy is reprinted with permission from ref 99, and
that from ethoxy is reprinted with permission from ref 100. Copyright
2009 American Institute of Physics.
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for example, in the less substituted ethoxy, where the g vector is a
more complicated bend.100

Further in isopropoxy, ||g||≈ ||h||, as it is exactly in methoxy.
Thus, it is not surprising that isopropoxy behaves approximately
like a C3v molecule. This observation holds the key to under-
standing the discrepancies in the ~A�~Xsplitting in isopropoxy.
(ii). Nonrelativistic Energy Splittings. In methoxy the split-

ting of the two lowest lines in the nonrelativistic vibronic
spectrum, the nominal ~A�~X splitting, is 0 by symmetry. There-
fore, it is not surprising that the separation of the two lowest lines
in the nonrelativistic isopropoxy spectrum, the nominal ~A�~X
splitting, is calculated to be only 17 cm�1.99

(iii). Splittings Including the Spin�Orbit Interaction. Turn-
ing on the spin�orbit interaction resolved the remaining dis-
crepancy. First, we provide some background. The X2Π state of
OH is the analogue of the ~X2E state in methoxy. In OH the
spin�orbit induced splitting is∼126 cm�1.194 A similar splitting
might be expected in methoxy, but in fact the measured
spin�orbit splitting is closer to half that, being reported as
61.8,195 64,196 and 63197 cm�1. The reduction of the size of the
spin�orbit interaction is due to the Jahn�Teller effect and is
known as Ham reduction.189 When the spin�orbit interaction is
included in isoproxy, the splitting of the lowest two states, the
nominal ~A�~X splitting, increases from 17 to 61.9 cm�1, now in
good agreement with themeasured value of∼68 cm�1. Thus, the
68 cm�1 splitting in isopropoxy is better thought of as the
analogue of spin�orbit induced splitting in methoxy, rather than
an ~A�~X splitting. Even the Ham reduction is similar. This
splitting of 68 cm�1 in isopropoxy is too small to have been
resolved in Lineberger’s photoelectron spectrum, and because no
asymmetry in the broadened line is predicted, the misassignment
is explained (see Figure 9).

2.8.4. Azolyls—Remarkable Five-Membered Rings.The
azolyls are five-membered nitrogen-containing heterocycles with
the form (CH)xNy with x + y = 5. They can be viewed as
substitutional isomers of the cyclopentadienyl radical (CH)5.
The cyclopentadienyl radical, with D5h symmetry, has a 2E1”
ground state.198�200 This state, which is Jahn�Teller distorted,
arises from a degenerate pair of π-orbitals, which are singly
occupied. As a result of the Jahn�Teller distortion, the 2E1”
states splits into a 2B1 and a

2A2 state. Dillon et al.,101 in a work
denoted DYS1, refer to this situation as the cyclopentadienyl
paradigm and observe that it holds for the monosubstituted
radical (CH)4N pyrrolyl and the two (CH)3N2 radicals, imida-
zolyl and parazolyl. The paradigm fails for 1,2,3-triazolyl as
explained by DYS1. The changes in the electronic properties of
the azolyls with increasing numbers of nitrogens reflects the
existence of a lone pair on nitrogen replacing the C�Hσ-bond. It
is much easier to excite an electron from a nitrogen lone pair
than from a C�H σ-bond. As a result, as the number of
proximal nitrogens increases the number of the low-lying
states increases and their character changes. For 1,2,3-triazolyl,
states arising from n f π, excitations of 2A1, and

2B1 symmetry,
where n is a nitrogen lone pair, need to be considered. Further
Matsika and Yarkony201 found that pyrazolyl, pictured in Figure 10,
has a seam of three state conical intersections within
∼3400 cm�1 of the ground state, a result subsequently con-
firmed by Schuurman and Yarkony202 and also by Stanton and
co-workers.79

The low-lying excited states and three state intersections have
a profound effect on the simulations of photoelectron spectra in
the azolyls. Although the photoelectron spectrum of pyrrolyl can
be well described by two electronic states,203,204 the pyrazolyl
simulation required three electronic states79 and 1,2,3-triazolyl
required that four states101 be included.
The analysis of Lineberger, Stanton, and co-workers79 of the

pyrrazolyl photoelectron spectrum, denoted LS, using the non-
relativistic time-independent methodology outlined in section
2.8.1, is particularly compelling. Key results of that study are
summarized in parts a and b of Figure 11, taken from LS.
Figure 11a shows the simulation of the photoelectron spectrum
of deuterated pyrazolide, pyrazolide-d3, obtained with only the
first two states included in the simulation. The agreement is seen
to be less than good. However, when the three lowest states are
included, Figure 11b agreement improves significantly.
It is significant to observe here that in the three state

simulation the transition moment for the 2A2 state was scaled
by 0.92, to get the experimentally observed peak heights. For this

Figure 9. Photoelectron spectrum of isopropoxy, which is in good
agreement with the measured spectrum (not shown). Inset is the low-
energy computed spectrum including spin�orbit interaction with the
resolution of 100 cm�1 resolution. The two lines under the peak labeled
a in the inset, resolved in dispersed fluorescence experiments,192 give the
computed 61.9 cm�1 ~A�~X splitting. Peak a could not be resolved in an
earlier photoelectron experiment.191

Reprinted with permission from ref 99. Copyright 2009 American
Institute of Physics.

Figure 10. Pyrazolyl at its minimum energy conical intersection. g
vector is indicated by arrows.
Reprinted with permission from ref 202. Copyright 2008 American
Institute of Physics.
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issue to be addressed from first principles, the electronic transi-
tion moments in eq 23b must be computed. This point is
discussed further in section 3.

3. THE FUTURE

Several aspects of nonadiabatic processes will serve to keep
their study in the forefront of chemistry. Nonadiabatic processes
are at the center of any approach to efficiently harvest solar
energy. Biological systems have developed elegant chromo-
phore/protein systems for harvesting and utilizing visible and
higher-energy photons. Thus, studies related to photocatalysis
and solar energy production will remain of both fundamental and
practical concern. More precise methods of treating these
process are likely to emerge. For systems treated by multi-
reference configuration interaction methods, interexcited
state derivative couplings are correctly and efficiently eval-
uated using modern analytic gradient technology.45,53 How-
ever, computational cost limits the systems for which this
approach is applicable. For larger systems, density functional
theory is frequently the method of choice. In this case,
interexcited state derivative couplings are approximated.
The accuracy and potential limitations of these approxima-
tions require additional study.

Improved treatments of nonadiabatic dynamics are needed.
Mixed quantum-classical dynamics (MQCD) have enabled
larger systems, i.e., more degrees of freedom, to be treated.
However, all MCQD methods have intrinsic limitations in
that they do not properly describe tunneling or zero point
energy effects. Consequently, semiclassical methods may
provide a path forward. Techniques to include the effects
on the environment will continue to improve. Here it is
important to note that methods that self-consistently adapt
the environment to the system, the part treated by exact
quantum mechanical dynamics, encounter difficulties when
describing nonadiabatic processes, because more than one
system state is involved. The partitioning techniques intro-
duced by Burghardt, Cederbaum, and co-workers provide an

interesting alternative. As far as current molecular mechanics
treatments of the environment are concerned, perhaps the
weak (least strong) link in the QM/MM simulation is the
HQM/MM Hamiltonian, that portion of the Hamiltonian that
describes the system�environment interactions. It can be
expected that in the near future this aspect of the QM/MM
simulation will be an active area of research.

In a related vein, Tully and co-workers observe117 several
directions in which work is needed to provide a unified theory of the
interaction ofmoleculeswithmetal surfaces. First electronic structure
methods capable of determining the electronic states and their
nonadiabatic interactions are needed. Tully cites progress using
embedding techniques205 but asserts that further advances are
needed. In addition, concerning the desirability of fully quantum
dynamics techniques, the need to treat motion of the metal surface
only increases the demands on fully quantum methods.

Photobiology will continue to drive and benefit from
technological advances. Mechanistic insights into these pro-
cesses can be obtained from reliable electronic structure
calculations. However, these studies should be augmented
with treatments of the nuclear dynamics to address mechan-
istic issues, as in the furan study presented in section 2.1 or
the intersection space analysis of Robb and co-workers in
section 2.7.2. Nuclear dynamics studies will also address
issues related to barrier tunneling, dynamics at conical inter-
sections, and intramolecular vibrational relaxation (IVR).
Such studies using surface-hopping methods and full quan-
tum methods based on the fly AIMS and Gaussian-based
MCDTH methods have already begun to appear.

As noted in section 2.8, great strides have been made in the
simulation of photoelectron spectra using both time-depen-
dent and time-independent methods. The advent of new slow
electron detection schemes163 and photoelectron imaging
techniques206�208 have increased the precision of the experi-
mental measurements. Time resolved methods162 have en-
abled new questions to be addressed. These increased cap-
abilities present new challenges to nonadiabatic computation.

Figure 11. Photoelectron spectrum of pyrazolide revealing the spectrum of pyrazolyl. (a) A nonadiabatic simulation that includes the X2A2 and A
2B1

states of the 1-pyrazolyl-d3 radical, superimposed on the experimental spectrum (dots). The solid line is the simulated spectrum with a Gaussian
convolution of a 10 meV full width at half-maximum. (b) A nonadiabatic simulation that includes the X 2A2, A

2B1, and B
2B2 states of the 1-pyrazolyl-d3

radical, which are fully coupled. The simulated spectrum is superimposed on the experimental spectrum (dots). The magnitude of the transition dipole
moment for the X2A2 state has been scaled down by a factor of 0.92 in this simulation tomatch the relative intensities of the origin peaks for the X 2A2 and
A2B1 states to those observed experimentally.
Reprinted with permission from ref 79. Copyright 2006 American Institute of Physics.
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The electronic transition moment integral μI,K,k
0 in eq 23b in

principle depends on both the diabatic electronic stateΨI
d(qN, w)

and the scattering orbital, ϕK
k(qN+1). The scattering orbital, in turn,

depends on both the k-vector of the electron and the vibronic
eigenstate (channel index) of the residual molecule.178 It is
common5 to neglect the diabatic state, channel, and k dependence
of μI,K,k

0 or to infer its diabatic state dependence from experimental
measurements,79,98 as in the pyrazoly example described in section
2.8.4. The computation of μI,K,k

0 is confounded by the fact that the
Born�Oppenheimer approximation fails in the residual molecule
and that low-energy electrons are produced. The correct determi-
nation of the relevant transition moment is an active area of
research.176�179 It is expected to be an important computational
issue in the near future.
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